Как проверить светодиод мультиметром

Советы электрика
Нет комментариев
101 просмотров

Как проверить светодиод мультиметромЦелостность элементов различных электронных устройств нуждается в диагностике во время ремонтных и профилактических работ. Потребители часто сталкиваются с необходимостью узнать, как проверить светодиод мультиметром в процессе починки микроволновки, монитора, автогенератора или компьютера. Тестирование каждого вида бытовой техники имеет свои специфические особенности.

Любые проявления экзотики исключаем, а будем знакомиться с классическим вариантом. Ведь мультиметр имеется в арсенале буквально каждого любителя самостоятельно выполнить простейшие операции. Случаются ситуации, требующие сборки для предстоящей диагностики несложной схемы.

Классификация

В общем виде диоды можно охарактеризовать как элементы полупроводникового типа с основой вида p-n переход. Графическая маркировка самых популярных типов этих радиоустройств представлена на рисунке ниже. Для наглядности значками «+» и «–» обозначены анод и катод. Обычно в схемах полярность обозначается графически.

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Остановимся на проверке каждого из них в отдельности.

Особенности исследования стабилитрона и диода выпрямительного типа

Для проверки защитного диода, выпрямительного элемента, шоттки инструмент измерения необходимо расположить в режиме прозвонки и эксплуатировать мультиметр в соответствии с рисунком ниже.

К выводам присоединяются щупы прибора измерения. На дисплее мультиметра или омметра отображается пороговые параметры напряжения диода при соединении черного провода с катодом, а красного – с анодом. Бесконечно большое значение сопротивления показывается при смене полярности. После подобной проверки можно делать выводы об исправности исследуемого элемента.

Выявление утечки при подключении в обратном порядке – свидетельство неисправности и необходимой замены сгоревшей детали.

Идентичный принцип используется во время проверки стабилитрона. Для определения стабилизации на конкретном уровне необходимо применить простейшую схему.

  • БП – регулируемый блок (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

После сборки схемы выполняется установка режима мультиметра и производятся замеры напряжения постоянного типа до 200 В.

Равномерно увеличиваем показатели применяемого напряжения до того момента, когда установленный амперметр не засвидетельствует протекание тока в цепи. Далее используется мультиметр по описанному выше способу.

Диагностика варикапов

В этом случае характерным признаком будет функционирование емкости непостоянного вида. Этот показатель пропорционален обратному напряжению. Способ определения замыкания или обрыва схож с тестированием обычных диодов. А тестирование емкости выполняется мультиметром, снабженным нужной функцией.

Установка элемента в конденсаторном разъеме и выбор соответствующего режима позволят начать проверку.

Высоковольтные диоды

Примером может послужить проверка высоковольтного элемента СВЧ печи. Особенности тестирования не позволяют применить стандартный метод, а требуют создания специальной схемы, которая присоединяется к блоку питания с параметрами до 45В.

Такого объема хватает при работе с абсолютным большинством подобных радиодеталей, а последовательность процедуры схожа с процессом, применяемым для обычных образцов. 2 кОм-3,6 кОм – диапазон величины сопротивления R.

Обращенный и туннельный тип

Здесь применяется принцип анализа зависимости тока от величины применяемого на конкретном временном отрезке напряжения. Как и в других случаях, потребуется сборка схемы определенного вида.

Перечень элементов:

VD – тестируемый диод туннельной модификации;

Uп – гальванический узел снабжения системы питанием;

Сопротивления: R1, R2 , R3 – 600Ω.

Измерения находятся в определенных границах – не менее максимального тока тестируемой детали. В маркировке находятся данные для ознакомления с нужными параметрами.

Сам алгоритм процесса заключается в установке максимума на R3 – переменном резисторе. Затем, с соблюдением правильного порядка подключения, присоединяется деталь, и производятся наблюдения с плавным, ритмичным понижением значения R3.

Диагностирование светодиодов

SMD элементы светодиодной ленты, инфракрасные виды, лазерные образцы тестируются по методике, схожей с проверкой выпрямительных диодов. Исключением являются представители этой группы с большой мощностью. Для проведения диагностирования потребуется источник стабилизированного питания.

  1. Пределы выполняемых процедур на приборе находятся до 10 А. При добавлении токоограничивающего сопротивления зарядный элемент можно применить в качестве БП.
  2. После измерения номинальных параметров тока блок питания отключается.
  3. В применяемом варианте тестирования до 20 В подвергающаяся проверке деталь присоединяется параллельно к диагностируемому элементу.
  4. Производится фиксирование показателей рабочего напряжения вслед за запуском блока питания.
  5. На основании анализа данных по требуемым в описи показателям и фактических определяется работоспособность исследуемого элемента.

Фотодиод

Измерение прямого и обратного сопротивления расположенного под светом элемента, выполняемое простым способом, чередуется с повторением процедуры в затемненном месте. Снятие вольтамперной характеристики потребуется для показаний большей точности.

Лампа накаливания 60Вт применяется для засветки, допускается и вариант расположения детали вблизи источника света.

Хаотические процессы деформации тока – дефект значительного числа фотодиодов. Определение значения тока обратного типа выполняется с целью выявления подобной погрешности в течение непродолжительного времени способом, указанным на рисунке.

При неизменных показателях во время всего тестирования элемент можно признать пригодным к работе.

Добавить комментарий

Ваш e-mail не будет опубликован.

Наверх